2012

A COUPLE OF ERROR-CORRECTING CODES

Tanveer Talukder*

Zubair Ahmed*

Partha Pratim Dey*

Abstract

:- In this paper we use Klein group and its regular representation to produce an alternative construction of 3 - error correcting [16,5] BCH code. We also compute the weight distribution of its dual code.

Key-Words:- Regular representation, linear code, generator matrix, parity-check matrix.

[^0]
1 Introduction

Throughout this paper F_{p}, for some prime p, will denote the Galois field $G F(p)$ and F_{p}^{k} will be the vector space comprising of vectors $x=\left(x_{1}, \ldots, x_{k}\right)$ where $x_{i} \in F_{p}$ for $i=1, \ldots, k$. Let $\left\{g_{1}, \ldots, g_{4}\right\}$ be an enumeration of the elements of the Klein four group $Z_{2} \times Z_{2}$ of order 4 with identity element $g_{1}=(0,0), g_{2}=(1,0), g_{3}=(0,1)$ and $g_{4}=(1,1)$ and let $R\left(g_{i}\right)$ denote the regular representation of g_{i} in $Z_{2} \times Z_{2}$ using this enumeration to index rows and columns of the representation matrix. Then

$$
R\left(g_{1}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], R\left(g_{2}\right)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right], R\left(g_{3}\right)=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \text { and } R\left(g_{4}\right)=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

and the following:
$R\left(Z_{2} \times Z_{2}\right)=\left[\begin{array}{llll}R\left(g_{1}\right) & R\left(g_{1}\right) & R\left(g_{1}\right) & R\left(g_{1}\right) \\ R\left(g_{1}\right) & R\left(g_{2}\right) & R\left(g_{3}\right) & R\left(g_{4}\right) \\ R\left(g_{1}\right) & R\left(g_{4}\right) & R\left(g_{2}\right) & R\left(g_{3}\right) \\ R\left(g_{1}\right) & R\left(g_{3}\right) & R\left(g_{4}\right) & R\left(g_{2}\right)\end{array}\right]$
is a normalized square matrix in F_{2} of order 16 afforded by the enumeration $\left\{g_{1}, \ldots, g_{4}\right\}$ of $Z_{2} \times Z_{2}$. Each of the 16 rows of $R\left(Z_{2} \times Z_{2}\right)$ can be viewed as a row -vector in F_{2}^{16}. We partition these 16 row-vectors in 4 families F_{1}, F_{2}, F_{3} and F_{4} where F_{1} comprises of rows 1 through 4, F_{2} comprises of rows 5 through $8, F_{3}$ comprises of rows 9 through 12 and F_{4} comprises of the remaining four rows of $R\left(Z_{2} \times Z_{2}\right)$. For each m, we denote the 4 vectors of F_{m} by $w_{m 1}, \ldots, w_{m 4}$ and let B_{m} be the block matrix given by

$$
B_{m}=\left[\begin{array}{l}
w_{m 1}-w_{m 2} \\
w_{m 1}-w_{m 3} \\
w_{m 1}-w_{m 4}
\end{array}\right] .
$$

We then gaussjord the following 12×16 matrix
$\left[\begin{array}{l}B_{1} \\ B_{2} \\ B_{3} \\ B_{4}\end{array}\right]=\left[\begin{array}{llllllllllllllll}1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0\end{array}\right]$
to obtain
$\left[\begin{array}{llllllllllllllll}1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$
which after appropriate permutation of columns becomes

$$
G=\left[\begin{array}{llllllllllllllll}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right] .
$$

Notice that each row of G above is a vector of F_{2}^{16} and the subspace spanned by its 5 rows over F_{2} is a linear code and G is its generator matrix. We will denote this code by $C(G)$ and explore it throughout the rest of the paper. We will also explore the dual code $C(G)^{\perp}$. For an understanding of the linear code at a basic level one may please consult [1] and [2].

2 Weight Distribution of $C(G)$

We begin with a theorem.
Theorem (2.1) $C(G)$ is a[16,5,8] linear code with1 code-word of weight 0,1 code-word of weight 16 and 30 code-words of weight 8 .
Proof. Let w_{i} denote the $i^{t h}$ row of G and $w t\left(w_{i}\right)$ denote the weight of w_{i}. Also let $w_{i} * w_{j}$ denote the number of 1 's w_{i} and w_{j} have in common. Since
$G \cdot G^{t r}=\left[\begin{array}{lllll}8 & 4 & 4 & 4 & 4 \\ 4 & 8 & 4 & 4 & 4 \\ 4 & 4 & 8 & 4 & 4 \\ 4 & 4 & 4 & 8 & 4 \\ 4 & 4 & 4 & 4 & 8\end{array}\right]$,
it is obvious that $w t\left(w_{i}\right)=8$ for $\forall i$ and $w_{i} * w_{j}=4$ for $i \neq j$. As $w t\left(w_{i}+w_{j}\right)=w t\left(w_{i}\right)+w t\left(w_{j}\right)-2\left(w_{i} * w_{j}\right)$, we have $w t\left(w_{i}+w_{j}\right)=8$ for $i \neq j$.
Thus each row-vector of G and each linear combination of two distinct row-vectors of G has weight 8 . Notice that $\sum_{i=1}^{5} w_{i}=1_{16}$ where 1_{16} is an all-one row-vector with 16 coordinates. Hence a linear combination of 4 row-vectors of G like $\sum_{m \in\{1,2,3,4,5\} \backslash i\}} w_{m}$ is in fact the vector $1_{16}+w_{i}$, which clearly has weight 8 . Similarly a linear combination of 3 row-vectors like $\sum_{m \in\{1,2,3,4,5 \backslash \backslash(i, j\}} w_{m}$ is $1_{16}+\left(w_{i}+w_{j}\right)$, a vector of weight 8 .

Corollary (2.2) $C(G)$ can correct 3 errors.
Proof. Since 3 is the largest integer less than half of minimum weight 8 of the code, $C(G)$ can correct 3 errors.

Next we show that this code $C(G)$ is in fact the $[16,5,8]$ extended BCH code.
Let $f(x)=x^{15}-1$ and we choose the primitive polynomial $p(x)=x^{4}+x^{3}+1$ in $F_{2}[x]$. Then $F_{2}[x] /(p(x))$ is a finite field of order 16 and a, a^{2}, \ldots, a^{15} (where $a=x$) constitute all the nonzero elements in $F_{2}[x] /(p(x))$. Let C be the code that results from considering the first six powers of a. To determine the generator polynomial $g(x)$ for C, we must find the minimum polynomials $m_{1}(x), m_{2}(x), \cdots, m_{6}(x)$ for a, a^{2}, \ldots, a^{6} respectively. Notice that $m_{1}(x)=m_{2}(x)=m_{4}(x)=x^{4}+x^{3}+1$. To get the others, we factor $x^{15}-1$ to obtain $x^{15}-1=(x+1)\left(x^{2}+x+1\right)\left(x^{4}+x+1\right)\left(x^{4}+x^{3}+1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right)$. Obviously then $m_{3}(x)=m_{6}(x)=x^{4}+x^{3}+x^{2}+x+1$ and $m_{5}(x)=x^{2}+x+1$. Thus $g(x)=\left(x^{2}+x+1\right)\left(x^{4}+x^{3}+1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right)=1+x^{2}+x^{5}+x^{6}+x^{8}+x^{9}+x^{10}$ and generator matrix J of C is given by:

$$
J=\left[\begin{array}{lllllllllllllll}
1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Then $J^{\text {ext }}=\left[\begin{array}{llllllllllllllll}1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1\end{array}\right]$
We gaussjord $J^{\text {ext }}$ to get
$\left[\begin{array}{llllllllllllllll}1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1\end{array}\right]$
which after appropriate permutation of columns becomes G. Thus we have the following theorem.
Theorem (2.3) $C(G)$ is the triple error-correcting extended[16,5,8] BCH code generated by $g(x)=1+x^{2}+x^{5}+x^{6}+x^{8}+x^{9}+x^{10}$.

3 Weight Distribution of the Dual Code $C(G)^{\perp}$

Since $\left.G=\coprod_{5}: M\right]$ where
$M=\left[\begin{array}{lllllllllll}1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1\end{array}\right]$,
we have for the parity check matrix of $C(G)$
$H=\left[M^{t r}: I_{11}\right]$.
Notice that each row of H above is a vector of F_{2}^{16} and the subspace spanned by its 11 rows over F_{2} is a linear code $C(H)$ and H is its generator matrix. As $G H^{t r}=0, C(H)=C(G)^{\perp}$. We will find weight distribution of $C(H)$ from the weight distribution of $C(G)$.
Theorem (3.1) $C(H)$ is a $[16,1,4]$ linear code.
Proof. Since each row-vector of H has even weight (4 or 6), weight of each code-word of $C(H)$ is even. Assume now that $c \in C(H)$ and $w t(c)=2$. Then c has to be a linear combination of 2 rowvectors of H. Moreover the first 5 coordinates of the row-vectors must coincide. Since there are no two row-vectors with identical first five coordinates, a code-word of weight 2 does not exist in $C(H)$. Hence the minimum distance of $C(H)$ is 4

Corollary (3.2) There is no code-word of weight 14 in $C(H)$.

Proof. Let $c \in C(H)$ and $w t(c)=14$. As the sum of row-vectors of H is 1_{16}, we have $1_{16} \in C(H)$. Hence $c+1_{16} \in C(H)$ and has weight 2 , a contradiction to the fact that the minimum weight in $C(H)$ is 4 .

Thus in $C(H)$ there could be code-words only of weight $0,4,6,8,10,12$ and 16 . Obviously, the zero code-word is the only code-word of weight 0 and 1_{16} is the only code-word of weight 16 . Below we state a theorem [3] due to Mac Williams that will help us to find the weight distribution of the other code-words.

Theorem (3.3) (Mac Williams) Let C be an $[n, k]$ code over $G F(q)$ with A_{i}, the number of vectors of weight i in C and B_{i}, the number of vectors of weight i in C^{\perp}. The following relations relate the $\left\{A_{i}\right\}$ and $\left\{B_{i}\right\}$:

$$
\sum_{j=0}^{n}\binom{n-j}{v} A_{j}=q^{k-v} \sum_{j=0}^{n}\binom{n-j}{v-j} B_{j}, \text { where } v=0, \ldots, n .
$$

Let $C=C(H)$. Then $C^{\perp}=C(H)^{\perp}=C(G)$ and $B_{8}=30, B_{0}=1$ and $B_{16}=1$ by Theorem (2.1).
Notice that $\sum_{i=0}^{8} A_{2 i}=2^{11}$. Since $A_{0}=A_{16}=1, A_{2}=A_{14}=0, A_{4}=A_{12}, A_{6}=A_{10}$, we have $\sum_{i=0}^{8} A_{2 i}=2+2 A_{4}+2 A_{6}+A_{8}$ and $2 A_{4}+2 A_{6}+A_{8}=2^{11}-2$ i.e. $2 A_{4}+2 A_{6}+A_{8}=2046$. Taking $v=12$ in Mac Williams equation, we obtain:
$\sum_{j=0}^{16}\binom{16-j}{12} A_{j}=2^{11-12} \sum_{j=0}^{16}\binom{16-j}{12-j} B_{j}$
or $\binom{16}{12} A_{0}+\binom{12}{12} A_{4}=\frac{1}{2}\left[\binom{16}{12} B_{0}+B_{8}\binom{8}{4}\right]$
or $2\left(1820+A_{4}\right)=1820+2100$
$\therefore A_{4}=140$.
We insert $A_{4}=140$ in $2 A_{4}+2 A_{6}+A_{8}=2046$ to get $2 A_{6}+A_{8}=1766$.
Next we take $v=8$ and obtain:
$\sum_{j=0}^{16}\binom{16-j}{8} A_{j}=2^{11-8} \sum_{j=0}^{16}\binom{16-j}{8-j} B_{j}$
or $\binom{16}{8}+\binom{12}{8} A_{4}+\binom{10}{8} A_{6}+\binom{8}{8} A_{8}=2^{3}\left[\binom{16}{8} B_{0}+B_{8}\binom{8}{0}\right]$
or $\binom{16}{8}+\binom{12}{8} A_{4}+\binom{10}{8} A_{6}+\binom{8}{8} A_{8}=2^{3}\left[\binom{16}{8}+30\binom{8}{0}\right]$
or $12870+495 A_{4}+45 A_{6}+A_{8}=8[12870+30]$
$\therefore 495 A_{4}+45 A_{6}+A_{8}=90330$.

We now insert $A_{4}=140$ in $495 A_{4}+45 A_{6}+A_{8}=90330$ to get $45 A_{6}+A_{8}=21030$.
Solving now the system
$\left\{\begin{array}{l}2 A_{6}+A_{8}=1766 \\ 45 A_{6}+A_{8}=21030\end{array}\right.$
we obtain $A_{6}=448$ and $A_{8}=870$.
Thus we have the following theorem.

Theorem (3.4) The dual code $C(G)^{\perp}=C(H)$ has the following weight distribution.

Weight	Number of Words
0	1
4	140
6	448
8	870
10	448
12	140
16	1

References

[1] Pless, V. (2003) Introduction to the Theory of Error Correcting Codes, Wiley Student Edition, John Wiley \& Sons (Asia) Pte. Ltd., Singapore.
[2] Klima, R.E., Sigmon, N. and Stitzinger, E. (2000) Applications of Abstract Algebra with MAPLE, CRC Press, Boca Raton.
[3] MacWilliams, F. J. (1963) A theorem on the distribution of weights in a systematic code, Bell Syst. Tech. Journal, 42 pp 79-94.

[^0]: * Department of Electrical Engineering and Computer Science, North South University, Bangladesh.

